Non-line-of-sight identification in ultra-wideband systems based on received signal statistics
نویسنده
چکیده
Non-line-of-sight (NLOS) propagation can severely degrade the reliability of communication and localisation accuracy in indoor ultra-wideband (UWB) ‘location-aware’ networks. Link adaptation and NLOS bias mitigation techniques have respectively been proposed to alleviate these effects, but implicitly rely on the ability to accurately distinguish between LOS and NLOS propagation scenarios. A statistical NLOS identification technique based on the hypothesis-testing of received signal parameters in UWB propagation channels is discussed. In contrast to narrowband and wideband signals, UWB signals possess higher temporal resolution and robustness to multipath fading. We show that these characteristics result in differences in the statistics of (a) the time-of-arrival (TOA), (b) the received signal strength (RSS) and (c) the root-mean-squared delay spread (RDS) of the received signals, between LOS and NLOS propagation scenarios, which can be exploited for accurate channel identification. We statistically characterise the ability of TOA, RSS and RDS estimates to distinguish between LOS and NLOS propagation based on an extensive indoor measurement campaign. Our measurement results suggest that the RDS of UWB signals can, even in isolation and without complete statistical information, serve as a robust and computationally efficient indicator of the LOS/NLOS nature of propagation. Finally, we demonstrate the efficacy of the discussed NLOS identification method in a locationtracking application based on indoor UWB measurements.
منابع مشابه
Two Novel Methods for Accurate NLOS Detection Based on Channel Statistics
Time-of-arrival (TOA) estimation is the first step of the most positioning algorithms. However in various environments especially when ultra wideband (UWB) pulses are used, TOA extraction from the received signal is challenging. UWB radio propagation bears multipath phenomenon, therefore correct identification of the first path TOA highly depends on the statistical characteristics of the enviro...
متن کاملReliable Line-of-Sight and Non-Line-of-Sight Propagation Channel Identification in Ultra-Wideband Wireless Networks
The paper addresses the problem of line-of-sight (LOS) vs. non-line-of-sight (NLOS) propagation link identification in ultrawideband (UWB) wireless networks, which is necessary for improving the accuracy of radiolocation and positioning applications. A LOS/NLOS likelihood hypothesis testing approach is applied based on exploiting distinctive statistical features of the channel impulse response ...
متن کاملNLOS Identification and Weighted Least-Squares Localization for UWB Systems Using Multipath Channel Statistics
Non-line-of-sight (NLOS) identification and mitigation carry significant importance in wireless localization systems. In this paper, we propose a novel NLOS identification technique based on the multipath channel statistics such as the kurtosis, the mean excess delay spread, and the root-mean-square delay spread. In particular, the IEEE 802.15.4a ultrawideband channel models are used as example...
متن کاملEe Tr an S . on Si Gn Al Pr Oc Es Sin G
This paper deals with the problem of radio localization of moving terminals (MTs) for indoor applications with mixed line-of-sight/non-line-of-sight (LOS/NLOS) conditions. To reduce false localizations, a grid-based Bayesian approach is proposed to jointly track the sequence of the positions and the sight conditions of the MT. This method is based on the assumption that both the MT position and...
متن کاملOff-body UWB channel characterisation within a hospital ward environment
Received signal strength measurements and delay statistics are presented for both a stationary and mobile user equipped with a wearable UWB radio transmitter within a hospital environment. The measurements were made for both waist and chest mounted antennas using RF-over-fibre technology to eliminate any spurious electromagnetic scattering effects associated with metallic co-axial cables. The r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009